

City Center Campus		School of Industrial Engineering and Design	
Program	56IA – Bachelor of Science in Industrial Electronics Engineering and Automation		

Course number and name			
Number	565001084		
Name	Introduction to chaos in science and technology		
Semester	S8 [(February-June)]		

Credits and contact hours			
ECTS Credits	3		
Contact hours	30		

Coordinator's nameFaleiro Usanos, Eduardo [eduardo.faleiro@upm.es]	
--	--

Specific course information				
Description of course content				
The course is about Chaos Theory and is an introduction to the properties of dynamical				
systems that can exhibit chaotic solutions for certain values taken by their parameters. It				
examines the background of bifurcation theory to study the transition to chaos. The				
content of the subject has a medium level in mathematics and uses small programs				
written in Matlab to illustrate the proposed examples. Some applications to science and				
engineering are studied at length.				
List of topics to be covered				
1. Introduction to chaos				
1.1. Topics on dynamical systems				
1.2. Chaos and randomness.				
1.3. Examples				
2. Unidimensional dynamical systems				
2.1. Stationary solutions: fixed points.				
2.2. Stability analysis.				
2.3. Discrete systems.				
2.4. Examples.				
3. Bidimensional dynamical systems				
3.1. Fixed points and limit cycles.				
3.2. Stability analysis				
3.3. Discrete systems.				
3.4. Examples.				
4. Bifurcation theory				

- 4.1. Bifurcations in unidimensional systems
- 4.2. Bifurcations in bidimensional systems.
- 4.3. Bifurcations in discrete dynamical systems
- 5. Tridimensional continuous dynamical systems
 - 5.1. Special features from 3D.
 - 5.2. The paradigm of chaos: The Lorenz attractor
 - 5.3. Other examples of chaotic systems.
- 6. Chaos from time series
 - 6.1. Some tools for detecting chaos in time series.
 - 6.2. Attractor reconstruction from time series: Ruelle-Takens theory.
 - 6.3. Examples

Prerequisites or co-requisites

None.

Course category in the program

____ R (required)

X E (elective)

(elective courses may not be offered every year)

Specific	goals	for	the	course	
----------	-------	-----	-----	--------	--

Specific outcomes of instruction

- RA283 Be acquainted with the theory of dynamical systems.
- RA285 Know the stationary solutions of some types of dynamical systems.
- RA287 Be able to handle some of the most basic tests on the identification of chaos in time series.
- RA286 Understand the theory of bifurcations and their connection to possible routes to chaos.
- RA288 Apply the chaos identification tests to concrete examples.
- RA284 Express simple physical problems in terms of dynamical systems.

Bibliography and supplemental materials

To be specified.

Teaching methodology					
<u>X</u> lectures	_X_ problem solving sessions	_X_ collaborative actions	laboratory sessions		
Other:					