

City Center Campus		School of Industrial Engineering and Design	
Program	56DD - Bac Developmen 56IM – Bac 56IE – Bac 56IA – Bac Automation 56IQ – Bac	chelor of Science in Industrial Design Engineering and Product nt chelor of Science in Mechanical Engineering helor of Science in Electrical Engineering helor of Science in Industrial Electronics Engineering and helor of Science in Chemical Engineering	

Course number and name				
Number	565005082, 565003082, 565002082, 565001082, 565004082			
Name	Finite element based simulation model for fluid dynamics			
Semester	S8 [(February-June)]			

Credits and contact hours				
ECTS Credits	3			
Contact hours	30			

Coordinator's name Doce Carrasco, Yolanda Sofia [yolandasofia.doce@upm.es]]
--	---

Specific	course	inform	ation
----------	--------	--------	-------

Description of course content

List of topics to be covered

1. Fluid Mechanics

- 1.1. Definition and properties of fluids
- 1.2. Types of flow
- 1.3. Equations of Fluid Dynamics
- 1.4. Turbulence
 - 1.4.1. Introduction to turbulence
 - 1.4.2. Turbulent stresses
 - 1.4.3. Reynolds equation
 - 1.4.4. Problem of closing turbulent models
- 1.5. Method of finite volumes
- 2. Numerical techniques in Engineering
 - 2.1. Introduction to numerical techniques
 - 2.2. Application of the method of finite volumes to 2D and 3D geometry
 - 2.3. From differential equations to a system of algebraic equations: Finite
 - elements and finite volumes

2.4. The problem of the non-linearity of the equations

2.5. Iterative method of solving the algebraic system of equations: Convergence of the solution, numerical stability, precision and consistency of the solution2.6. Structure of a program of finite elements and finite volumes: preprocessing,

physical solution and postprocessing

2.7. Types of meshing

3. Validation of a Fluid mechanics- model simulation

Prerequisites or co-requisites

None.

Course category in the program

____ R (required)

X E (elective)

(elective courses may not be offered every year)

Specific goals for the course

Specific outcomes of instruction

- RA336/ RA315/ RA310/RA292/RA121 Be able to communicate with English speakers
- RA338/ RA312/ RA281/RA274 Be able to solve fluid mechanics problems
- RA334 Know how to mathematically model a physics problem
- RA337/ RA311/ RA313/ RA293/RA273 Understand the physical fluid mechanics problems
- RA239 Be able to plan and organize teamwork and give a short oral presentation.
- RA191 Be able to interpret the results of applying a numerical method.
- RA29 Be familiar with the basic principles of fluid mechanics
- RA31 Be able to apply the principles in practice: calculation of pipes, channels, fluid systems, etc.
- RA30 Be able synthesize and specify the fluid-related phenomena and be proficient in the laws governing fluid behaviour.

Bibliography and supplemental materials

- "Introduction to Finite Elements in Engineering" (3rd Edition), Tirupathi R. Chandrupatla, Ashok D. Belegundu
- An Introduction to Computational Fluid Dynamics. The Finite Volume Method .
 H. K. Versteeg & W. Malalasekera

Teaching methodology						
X lectures		_X _ problem solving sessions	collaborative actions	<u>X</u> laboratory sessions		
Other:	Projects					